Direkt zum Inhalt | Direkt zur Navigation

Benutzerspezifische Werkzeuge
Sie sind hier: Startseite Benutzer Manfred Lehn Lehre Mondschein

Oberseminar Konforme Feldtheorie, Strings und Mondscheinvermutung WS 2014

Zeit: Mo 14-16 Uhr
Ort: im Wintersemester 2014:  Raum 04-432. 
Dozenten: G. Honecker (Insitut für Physik), M. Lehn, D. van Straten (Institut für Mathematik)

                                   

Im Wintersemester 2014/25              

  • 3.11.14 G. Honecker:    Motivation: bosonic strings, conformal field theory and modular functions
  • 10.11.14 G. Honecker:  Conformal transformations, energy momentum tensor and the Virasoro algebra.
  • 17.11.14 M. Lehn: Lie algebra cohomology
  • 24.11.14 M. Lehn: Lie algebra cohomology
                   G. Honecker: Comments on the operator-state correspondence / Introduction to fermions on the worldsheet 
  • 1.12.14 D. van Straten: Spinors
  • 8.12.14 G. Honecker: Introduction to the super space formalism
  • 15.12.14 D. van Straten: Spinors II
  • 12. 1.15 G. Honecker: Classical and Quantum Superstrings
  • 17. 1. 15 M. Blaszczyk: Strings on Tori and Orbifolds
  • 24. 1. 15 M. Blaszczyk: Strings on Tori and Orbifolds II
  • 2. 2. 15 M. Blaszczyk: Strings on Tori and Orbifolds III
  • 9. 2. 15 G. Honecker: Virasoro constraints and no-ghost theorem: light-cone vs. covariant quantization.

Im Sommersemester 2014

  • 28.4.14 M. Lehn: Leech lattice and Conway groups I.
  • 5.5.14 M. Lehn: Leech lattice and Conway groups II.
  • 12.5.14 D. van Straten: The free boson vertex algebra.
  • 19.5.14 D. van Straten: Virasoro algebra and conformal structures.
  • 26.5.14 R. Terpereau: Existence of the Monster Group.
  • 2.6.14 M. Lehn: Sugawara Construction. Lattice vertex algebras I.
  • 16.6.14 M. Blaszcyk: Vertex algebras from string theory.
  • 23.6.14 M. Lehn: Lattice vertex algebras II.
  • 30.6.14 M. Lehn: Lattice vertex algebras III.
  • 2.7.14 No seminar
  • 14.7.14 No seminar
  • 21.7.14 M. Lehn: Orbifold construction I.  
                 Discussion: How to continue?

Im Wintersemester 2013/14

  • 28.10.13 M. Lehn: central extensions of Lie algebras and the Virasoro algebra.
  •  4.11.13 L. Biroth: Modular forms, the j-function, theta functions.
  • 11.11.13 M. Lehn: Affine and Kac-Moody algebras.
  • 18.11.13 M. Lehn: Theta functions (continued)
  • 25.11.13 D. Kupferer: Codes and lattices
  • 2.12.13 M. Lehn: Highest weight representations of semisimple algebras  and Weyl's character formula.
  • 9.12.13 M. Lehn: Highest weight representations of affine algebras and the Kac-Weyl character formula.
  • 16.12.13 P. Metelytsin: Steiner systems, Golay codes, Mathieu groups.
  • 6.1.14 D. van Straten: Introduction to vertex algebras.
  • 13.1.14 S. Singh: Report on lattices.
  • 20.1.14 A. Javanpeykar: Classification of Niemeier lattices after Venkov.
  • 27.1.14 M.  Zhyhovich: Siegel's mass formula.


Literaturliste:

  • [B1] R. E. Borcherds: Monstrous Moonshine and Monstrous Lie Superalgebras. Inventiones Math. 109 (1992), 405-444.
  • [B2] R. E. Borcherds: Vertex algebras, Kac-Moody algebras, and the Monster. Proc. Nat. Acad. Sci. U.S.A. 83 (1986), no. 10, 3068–3071.
  • [B3] R. E. Borcherds: The Leech lattice. Proc. Roy. Soc. London Ser. A 398 (1985), no. 1815, 365–376.
  • [C1] J.H. Conway, N.H.A. Sloane: Sphere Packings, Lattices and Groups. Grundlehren vol 290, Springer.  
  • [C2] J.H. Conway:  A characterisation of Leech's lattice. Inv. math. 7 (1969), 137 - 142.
  • [C3] J.H. Conway: A group of order 8,315,553,613,086,720,000. Bull.  London Math.  Soc. 1 (1969), 79 - 88.
  • [G1] T. Gannon: Moonshine Beyond the monster. Cambridge Monographs on Mathematical Physics.
  • [G2] H. Garland: The arithmetic theory of loop algebras. J. Algebra 53 (1978), no. 2, 480–551.
  • [K1] V. Kac: Infinite-dimensional Lie algebras.  Cambridge University Press, Cambridge, 1990.
  • [K2] V. Kac: Vertex algebras for beginners. University Lecture Series 10. American Mathematical Society, Providence, RI, 1998.
  • [K3] C. Kassel: Kähler differentials and coverings of complex simple Lie algebras extended over a commutative algebra. Proceedings of the Luminy conference on algebraic K-theory (Luminy, 1983). J. Pure Appl. Algebra 34 (1984), no. 2-3, 265–275.
  • [S1] J.-P. Serre: Cours d'arithmétique.
  • [T1] Th. M. Thompson: From Error-Correcting Codes Through Sphere Packings to Simple Groups. Carus Mathematical Monographs. Mathematical Association of America.
  • [T2] J. G. Thompson: Uniqueness of the Fischer-Griess Monster. Bull. London Math. Soc. 11 (1979), 340 - 346.
  • [T3] J. Tits: Le Monstre. Séminaire N. Bourbaki, 1983 - 9184, exp no 620, p 105 - 122.
  • [W1] E. Witt: Die 5-fach transitiven Gruppen von Mathieu. Abh. Math. Sem. Univ. Hamburg 12 (1937), no. 1, 256–264.
  • [W2] E. Witt: Über Steinersche Systeme. Abh. Math. Sem. Univ. Hamburg 12 (1937), no. 1, 265–275.
Artikelaktionen